Alternativity

From Vero - Wikipedia
Jump to navigation Jump to search

Template:Short description Template:Distinguish Template:Technical Template:One source In abstract algebra, alternativity is a property of a binary operation. A magma Template:Mvar is said to be Template:Visible anchor if <math>(xx)y = x(xy)</math> for all <math>x, y \in G</math> and Template:Visible anchor if <math>y(xx) = (yx)x</math> for all <math>x, y \in G</math>. A magma that is both left and right alternative is said to be Template:Visible anchor.<ref>Template:Citation.</ref>

Any associative magma (that is, a semigroup) is alternative. More generally, a magma in which every pair of elements generates an associative submagma must be alternative. The converse, however, is not true, in contrast to the situation in alternative algebras.

Examples

Examples of algebraic structures with an alternative multiplication include:

  • Any semigroup is associative and therefore alternative.
  • Moufang loops are alternative and flexible but generally not associative. See Template:Section link for more examples.
  • Octonion multiplication is alternative and flexible. The same is more generally true for any octonion algebra.
  • Applying the Cayley-Dickson construction once to a commutative ring with a trivial involution <math>a^\ast = a</math> gives a commutative associative algebra. Applying it twice gives an associative algebra. Applying it three times gives an alternative algebra. Applying it four or more times gives an algebra that is typically not alternative (thought it is in characteristic two). An example is the sequence <math>\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}, \mathbb{S},...</math> where <math>\mathbb{H}</math> is the algebra of quaternions, <math>\mathbb{O}</math> is the algebra of octonions, and <math>\mathbb{S}</math> is the algebras of sedenions.

See also

References

Template:Reflist


Template:Algebra-stub