Cardioid

From Vero - Wikipedia
Jump to navigation Jump to search

Template:Short description Template:CS1 config

A cardioid
File:Caustique.jpg
The caustic appearing on the surface of this cup of coffee is a cardioid.

Template:Wikt

In geometry, a cardioid (Template:Ety) is a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can also be defined as an epicycloid having a single cusp. It is also a type of sinusoidal spiral, and an inverse curve of the parabola with the focus as the center of inversion.<ref>Template:MathWorld</ref> A cardioid can also be defined as the set of points of reflections of a fixed point on a circle through all tangents to the circle.<ref>S Balachandra Rao . Differential Calculus, p. 457</ref>

File:Cardiod animation.gif
Cardioid generated by a rolling circle on a circle with the same radius

Giovanni Salvemini coined the name cardioid in 1741,<ref>Lockwood</ref> but the cardioid had been the subject of study decades beforehand.<ref name="Yates">Yates</ref> Although named for its resemblance to a conventional heart-like form, it is shaped more like the outline of the cross-section of a round apple without the stalk.<ref>Template:Cite book</ref>

A cardioid microphone exhibits an acoustic pickup pattern that, when graphed in two dimensions, resembles a cardioid (any 2d plane containing the 3d straight line of the microphone body). In three dimensions, the cardioid is shaped like an apple centred around the microphone which is the "stalk" of the apple.

Equations

File:Kardioide.svg
Generation of a cardioid and the coordinate system used

Let <math>a</math> be the common radius of the two generating circles with midpoints <math>(-a,0), (a,0)</math>, <math>\varphi</math> the rolling angle and the origin the starting point (see picture). One gets the

 x(\varphi) &= 2a (1 - \cos\varphi)\cdot\cos\varphi \ , \\
 y(\varphi) &= 2a (1 - \cos\varphi)\cdot\sin\varphi \ , \qquad 0\le \varphi < 2\pi

\end{align}</math> and therefrom the representation in

  • polar coordinates: <math display="block">r(\varphi) = 2a (1 - \cos\varphi).</math>
  • Introducing the substitutions <math>\cos\varphi = x/r</math> and <math display="inline">r = \sqrt{x^2 + y^2}</math> one gets after removing the square root the implicit representation in Cartesian coordinates: <math display="block">\left(x^2 + y^2\right)^2 + 4 a x \left(x^2 + y^2\right) - 4a^2 y^2 = 0.</math>

Proof for the parametric representation

A proof can be established using complex numbers and their common description as the complex plane. The rolling movement of the black circle on the blue one can be split into two rotations. In the complex plane a rotation around point <math>0</math> (the origin) by an angle <math>\varphi</math> can be performed by multiplying a point <math>z</math> (complex number) by <math> e^{i\varphi}</math>. Hence

the rotation <math>\Phi_+</math> around point <math>a</math> is<math>:z \mapsto a + (z - a)e^{i\varphi}</math>,
the rotation <math>\Phi_-</math> around point <math>-a</math> is: <math>z \mapsto -a + (z + a)e^{i\varphi}</math>.

A point <math>p(\varphi)</math> of the cardioid is generated by rotating the origin around point <math>a</math> and subsequently rotating around <math>-a</math> by the same angle <math>\varphi</math>: <math display="block">p(\varphi) = \Phi_ - (\Phi_+(0)) = \Phi_-\left(a - ae^{i\varphi}\right) = -a + \left( a - ae^{i\varphi} + a\right)e^{i\varphi} = a\;\left(-e^{i2\varphi} + 2e^{i\varphi} - 1\right).</math> From here one gets the parametric representation above: <math display="block">\begin{array}{cclcccc}

 x(\varphi) &=& a\;(-\cos(2\varphi) + 2\cos\varphi - 1) &=& 2a(1 - \cos\varphi)\cdot\cos\varphi & & \\
 y(\varphi) &=& a\;(-\sin(2\varphi) + 2\sin\varphi)     &=& 2a(1 - \cos\varphi)\cdot\sin\varphi &.&

\end{array}</math> (The trigonometric identities <math>e^{i\varphi} = \cos\varphi + i\sin\varphi, \ (\cos\varphi)^2 + (\sin\varphi)^2 = 1,</math> <math>\cos(2\varphi) = (\cos\varphi)^2 - (\sin\varphi)^2, </math> and <math>\sin (2\varphi) = 2\sin\varphi\cos\varphi</math> were used.)

Metric properties

For the cardioid as defined above the following formulas hold:

  • area <math>A = 6\pi a^2</math>,
  • arc length <math>L = 16 a</math> and
  • radius of curvature <math>\rho(\varphi) = \tfrac{8}{3}a\sin\tfrac{\varphi}{2} \, . </math>

The proofs of these statements use in both cases the polar representation of the cardioid. For suitable formulas see polar coordinate system (arc length) and polar coordinate system (area)

Template:Math proof

Template:Math proof \; d\varphi = \cdots = 8a\int_0^\pi\sqrt{\tfrac{1}{2}(1 - \cos\varphi)}\; d\varphi = 8a\int_0^\pi\sin\left(\tfrac{\varphi}{2}\right) d\varphi = 16a.</math> }}

Template:Math proof {r(\varphi)^2 + 2 \dot r(\varphi)^2 - r(\varphi) \ddot r(\varphi)} \ .</math>

For the cardioid <math>r(\varphi) = 2a (1 - \cos\varphi) = 4a \sin^2\left(\tfrac{\varphi}{2}\right)</math> one gets <math display="block">\rho(\varphi) = \cdots = \frac{\left[16a^2\sin^2\frac{\varphi}{2}\right]^\frac{3}{2}} {24a^2 \sin^2\frac{\varphi}{2}} = \frac{8}{3}a\sin\frac{\varphi}{2} \ . </math> }}

Properties

File:Kardioide-2.svg
Chords of a cardioid

Chords through the cusp

C1
Chords through the cusp of the cardioid have the same length <math>4a</math>.
C2
The midpoints of the chords through the cusp lie on the perimeter of the fixed generator circle (see picture).

Proof of C1

The points <math>P: p(\varphi),\; Q: p(\varphi + \pi)</math> are on a chord through the cusp (=origin). Hence <math display="block">\begin{align}

 |PQ| &= r(\varphi) + r(\varphi + \pi) \\
      &= 2a (1 - \cos\varphi) + 2a (1 - \cos(\varphi + \pi)) = \cdots = 4a

\end{align}.</math>

Proof for C2

For the proof the representation in the complex plane (see above) is used. For the points <math display="block">P:\ p(\varphi) = a\,\left(-e^{i2\varphi} + 2e^{i\varphi} - 1\right)</math> and <math display="block">Q:\ p(\varphi + \pi) = a\,\left(-e^{i2(\varphi + \pi)} + 2e^{i(\varphi + \pi)} - 1\right) = a\,\left(-e^{i2\varphi} - 2e^{i\varphi} - 1\right),</math>

the midpoint of the chord <math>PQ</math> is <math display="block">M:\ \tfrac{1}{2}(p(\varphi) + p(\varphi + \pi)) = \cdots = -a - ae^{i2\varphi}</math> which lies on the perimeter of the circle with midpoint <math>-a</math> and radius <math>a</math> (see picture).

Cardioid as inverse curve of a parabola

File:Kardioide-parabel-1.svg
Cardioid generated by the inversion of a parabola across the unit circle (dashed)

Template:Main

A cardioid is the inverse curve of a parabola with its focus at the center of inversion (see graph)

For the example shown in the graph the generator circles have radius <math display="inline">a = \frac{1}{2}</math>. Hence the cardioid has the polar representation <math display="block">r(\varphi) = 1 - \cos\varphi</math> and its inverse curve <math display="block">r(\varphi) = \frac{1}{1 - \cos\varphi},</math> which is a parabola (s. parabola in polar coordinates) with the equation <math display="inline">x = \tfrac{1}{2}\left(y^2 - 1\right)</math> in Cartesian coordinates.

Remark: Not every inverse curve of a parabola is a cardioid. For example, if a parabola is inverted across a circle whose center lies at the vertex of the parabola, then the result is a cissoid of Diocles.

Cardioid as envelope of a pencil of circles

File:Kardioide-kreise.svg
Cardioid as envelope of a pencil of circles

In the previous section if one inverts additionally the tangents of the parabola one gets a pencil of circles through the center of inversion (origin). A detailed consideration shows: The midpoints of the circles lie on the perimeter of the fixed generator circle. (The generator circle is the inverse curve of the parabola's directrix.)

This property gives rise to the following simple method to draw a cardioid:

  1. Choose a circle <math>c</math> and a point <math>O</math> on its perimeter,
  2. draw circles containing <math>O</math> with centers on <math>c</math>, and
  3. draw the envelope of these circles.

Template:Math proof

Cardioid as envelope of a pencil of lines

File:Kardioide-sehnen.svg
Cardioid as envelope of a pencil of lines

A similar and simple method to draw a cardioid uses a pencil of lines. It is due to L. Cremona:

  1. Draw a circle, divide its perimeter into equal spaced parts with <math>2N</math> points (s. picture) and number them consecutively.
  2. Draw the chords: <math>(1,2), (2,4), \dots, (n,2n), \dots, (N,2N), (N+1,2), (N+2,4), \dots </math>. (That is, the second point is moved by double velocity.)
  3. The envelope of these chords is a cardioid.
File:Cycloid-cremona-pr.svg
Cremona's generation of a cardioid

Proof

The following consideration uses trigonometric formulae for <math>\cos\alpha + \cos\beta</math>, <math>\sin\alpha + \sin\beta</math>, <math>1 + \cos 2\alpha </math>, <math>\cos 2\alpha</math>, and <math>\sin 2\alpha</math>. In order to keep the calculations simple, the proof is given for the cardioid with polar representation <math>r = 2(1 \mathbin{\color{red}+} \cos\varphi)</math> (§ Cardioids in different positions).

Equation of the tangent of the cardioid with polar representation Template:Math

From the parametric representation <math display="block">\begin{align}

 x(\varphi) &= 2(1 + \cos\varphi) \cos \varphi, \\
 y(\varphi) &= 2(1 + \cos\varphi) \sin \varphi

\end{align}</math>

one gets the normal vector <math>\vec n = \left(\dot y , -\dot x\right)^\mathsf{T}</math>. The equation of the tangent <math>\dot y(\varphi) \cdot (x - x(\varphi)) - \dot x(\varphi) \cdot (y - y(\varphi)) = 0</math> is: <math display="block">(\cos2\varphi + \cos \varphi)\cdot x + (\sin 2\varphi + \sin \varphi)\cdot y = 2(1 + \cos \varphi)^2 \, .</math>

With help of trigonometric formulae and subsequent division by <math display="inline">\cos\frac{1}{2}\varphi</math>, the equation of the tangent can be rewritten as: <math display="block">\cos(\tfrac{3}{2}\varphi) \cdot x + \sin\left(\tfrac{3}{2}\varphi\right) \cdot y = 4 \left(\cos\tfrac{1}{2}\varphi\right)^3 \quad 0 < \varphi < 2\pi,\ \varphi \ne \pi .</math>

Equation of the chord of the circle with midpoint Template:Math and radius Template:Math

For the equation of the secant line passing the two points <math>(1 + 3\cos\theta, 3\sin\theta),\ (1 + 3\cos{\color{red}2}\theta, 3\sin{\color{red}2}\theta))</math> one gets: <math display="block">(\sin\theta - \sin 2\theta) x + (\cos 2\theta - \sin \theta) y = -2\cos \theta - \sin(2\theta) \, .</math>

With help of trigonometric formulae and the subsequent division by <math display="inline">\sin\frac{1}{2}\theta</math> the equation of the secant line can be rewritten by: <math display="block">\cos\left(\tfrac{3}{2}\theta\right) \cdot x + \sin\left(\tfrac{3}{2}\theta\right) \cdot y = 4 \left(\cos\tfrac{1}{2}\theta\right)^3 \quad 0 < \theta < 2\pi .</math>

Conclusion

Despite the two angles <math>\varphi, \theta</math> have different meanings (s. picture) one gets for <math>\varphi = \theta </math> the same line. Hence any secant line of the circle, defined above, is a tangent of the cardioid, too:

The cardioid is the envelope of the chords of a circle.

Remark:
The proof can be performed with help of the envelope conditions (see previous section) of an implicit pencil of curves: <math display="block">F(x, y, t) = \cos\left(\tfrac{3}{2}t\right) x + \sin\left(\tfrac{3}{2}t\right) y - 4 \left(\cos\tfrac{1}{2}t\right)^3 = 0 </math>

is the pencil of secant lines of a circle (s. above) and <math display="block">F_t(x, y, t) = - \tfrac{3}{2}\sin\left(\tfrac{3}{2}t\right) x + \tfrac{3}{2}\cos \left(\tfrac{3}{2}t\right) y + 3\cos\left(\tfrac{1}{2}t\right) \sin t = 0\, .</math>

For fixed parameter t both the equations represent lines. Their intersection point is <math display="block">x(t) = 2(1 + \cos t)\cos t,\quad y(t) = 2(1 + \cos t)\sin t,</math>

which is a point of the cardioid with polar equation <math>r = 2(1 + \cos t).</math>

File:Kardioide-kaustik-1.svg
Cardioid as caustic: light source <math>Z</math>, light ray <math>\vec s</math>, reflected ray <math>\vec r</math>
File:Kardioide-kaustik-2.svg
Cardioid as caustic of a circle with light source (right) on the perimeter

Cardioid as caustic of a circle

The considerations made in the previous section give a proof that the caustic of a circle with light source on the perimeter of the circle is a cardioid.

If in the plane there is a light source at a point <math>Z</math> on the perimeter of a circle which is reflecting any ray, then the reflected rays within the circle are tangents of a cardioid.

Template:Math proof \varphi, \sin{\color{red}\tfrac{3}{2}} \varphi\right)^\mathsf{T}</math> (see graph) and contains point <math>C:\ (1 + 3\cos\varphi, 3\sin\varphi) </math>. The reflected ray is part of the line with equation (see previous section) <math display="block">\cos\left(\tfrac{3}{2}\varphi\right) x + \sin \left(\tfrac{3}{2}\varphi\right) y = 4 \left(\cos\tfrac{1}{2}\varphi\right)^3 \, ,</math> which is tangent of the cardioid with polar equation <math display="block">r = 2(1 + \cos\varphi)</math> from the previous section.}}

Remark: For such considerations usually multiple reflections at the circle are neglected.

Cardioid as pedal curve of a circle

File:Kardioide-kreistangenten.svg
Point of cardioid is foot of dropped perpendicular on tangent of circle

The Cremona generation of a cardioid should not be confused with the following generation:

Let be <math>k</math> a circle and <math>O</math> a point on the perimeter of this circle. The following is true:

The foots of perpendiculars from point <math>O</math> on the tangents of circle <math>k</math> are points of a cardioid.

Hence a cardioid is a special pedal curve of a circle.

Proof

In a Cartesian coordinate system circle <math>k</math> may have midpoint <math>(2a,0)</math> and radius <math>2a</math>. The tangent at circle point <math>(2a + 2a\cos\varphi, 2a\sin \varphi)</math> has the equation <math display="block">(x - 2a) \cdot \cos\varphi + y\cdot\sin\varphi = 2a\, .</math> The foot of the perpendicular from point <math>O</math> on the tangent is point <math>(r\cos \varphi, r\sin \varphi)</math> with the still unknown distance <math>r</math> to the origin <math>O</math>. Inserting the point into the equation of the tangent yields <math display="block">(r\cos\varphi - 2a)\cos\varphi + r\sin^2\varphi = 2a \quad \rightarrow \quad r = 2a(1 + \cos \varphi) </math> which is the polar equation of a cardioid.

Remark: If point <math>O</math> is not on the perimeter of the circle <math>k</math>, one gets a limaçon of Pascal.

The evolute of a cardioid

File:Cardioid-evol.svg
Template:Legend Template:Legend Template:Legend

The evolute of a curve is the locus of centers of curvature. In detail: For a curve <math>\vec x(s) = \vec c(s)</math> with radius of curvature <math>\rho(s)</math> the evolute has the representation <math display="block">\vec X(s) = \vec c(s) + \rho(s)\vec n(s).</math> with <math>\vec n(s)</math> the suitably oriented unit normal.

For a cardioid one gets:

The evolute of a cardioid is another cardioid, one third as large, and facing the opposite direction (s. picture).

Proof

For the cardioid with parametric representation <math display="block">x(\varphi) = 2a (1 - \cos\varphi)\cos\varphi = 4a \sin^2\tfrac{\varphi}{2}\cos\varphi\, ,</math> <math display="block">y(\varphi) = 2a (1 - \cos\varphi)\sin\varphi = 4a \sin^2\tfrac{\varphi}{2}\sin\varphi</math> the unit normal is <math display="block">\vec n(\varphi) = (-\sin\tfrac{3}{2}\varphi, \cos\tfrac{3}{2}\varphi)</math> and the radius of curvature <math display="block">\rho(\varphi) = \tfrac{8}{3}a\sin\tfrac{\varphi}{2} \, . </math> Hence the parametric equations of the evolute are <math display="block">X(\varphi) = 4a \sin^2\tfrac{\varphi}{2}\cos\varphi-\tfrac{8}{3}a\sin\tfrac{\varphi}{2}\cdot \sin\tfrac{3}{2} \varphi = \cdots = \tfrac{4}{3}a\cos^2\tfrac{\varphi}{2}\cos\varphi - \tfrac{4}{3}a \, , </math> <math display="block">Y(\varphi) = 4a \sin^2\tfrac{\varphi}{2} \sin\varphi + \tfrac{8}{3}a \sin\tfrac{\varphi}{2} \cdot\cos\tfrac{3}{2} \varphi = \cdots = \tfrac{4}{3}a \cos^2\tfrac{\varphi}{2} \sin\varphi \, . </math> These equations describe a cardioid a third as large, rotated 180 degrees and shifted along the x-axis by <math>-\tfrac{4}{3} a</math>.

(Trigonometric formulae were used: <math>

 \sin\tfrac{3}{2}\varphi = \sin\tfrac{\varphi}{2}\cos\varphi + \cos\tfrac{\varphi}{2}\sin\varphi\ ,\ \cos\tfrac{3}{2}\varphi = \cdots, \ 
 \sin\varphi = 2\sin\tfrac{\varphi}{2}\cos\tfrac{\varphi}{2}, \ 
 \cos\varphi= \cdots \ .

</math>)

Orthogonal trajectories

File:Cardioid-penc.svg
Orthogonal cardioids

An orthogonal trajectory of a pencil of curves is a curve which intersects any curve of the pencil orthogonally. For cardioids the following is true: Template:Block indent (The second pencil can be considered as reflections at the y-axis of the first one. See diagram.)

Proof

For a curve given in polar coordinates by a function <math>r(\varphi)</math> the following connection to Cartesian coordinates hold: <math display="block">\begin{align}

x(\varphi) &= r(\varphi)\cos\varphi\, ,\\
y(\varphi) &= r(\varphi)\sin\varphi

\end{align} </math>

and for the derivatives <math display="block">\begin{align} \frac{dx}{d\varphi} &= r'(\varphi)\cos\varphi - r(\varphi)\sin\varphi\, ,\\ \frac{dy}{d\varphi} &= r'(\varphi)\sin\varphi + r(\varphi)\cos\varphi\, . \end{align}</math>

Dividing the second equation by the first yields the Cartesian slope of the tangent line to the curve at the point <math>(r(\varphi), \varphi)</math>: <math display="block">\frac{dy}{dx} = \frac{r'(\varphi)\sin\varphi + r(\varphi)\cos\varphi}{r'(\varphi)\cos\varphi - r(\varphi)\sin\varphi}.</math>

For the cardioids with the equations <math>r=2a(1-\cos\varphi) \; </math> and <math>r = 2b(1 + \cos\varphi)\ </math> respectively one gets: <math display="block">\frac{dy_a}{dx} = \frac{\cos(\varphi) - \cos(2\varphi)}{\sin(2\varphi) - \sin(\varphi)} </math> and <math display="block"> \frac{dy_b}{dx} = -\frac{\cos(\varphi) + \cos(2\varphi)}{\sin(2\varphi) + \sin(\varphi)}\ .</math>

(The slope of any curve depends on <math>\varphi</math> only, and not on the parameters <math>a</math> or <math>b</math>!)

Hence <math display="block">\frac{dy_a}{dx}\cdot \frac{dy_b}{dx} = \cdots = -\frac{\cos^2\varphi-\cos^2 (2\varphi)}{\sin^2 (2\varphi)-\sin^2\varphi} = -\frac{-1 + \cos^2\varphi + 1 - \cos^2 2\varphi}{\sin^2 (2\varphi) - \sin^2(\varphi)} = -1\, .</math> That means: Any curve of the first pencil intersects any curve of the second pencil orthogonally.

File:Kardioide-4.svg
4 cardioids in polar representation and their position in the coordinate system

In different positions

Choosing other positions of the cardioid within the coordinate system results in different equations. The picture shows the 4 most common positions of a cardioid and their polar equations.

In complex analysis

File:Mandel zoom 00 mandelbrot set.jpg
Boundary of the central, period 1, region of the Mandelbrot set is a precise cardioid.

In complex analysis, the image of any circle through the origin under the map <math>z \to z^2</math> is a cardioid. One application of this result is that the boundary of the central period-1 component of the Mandelbrot set is a cardioid given by the equation <math display="block"> c \,=\, \frac{1 - \left(e^{it} - 1\right)^2}{4}.</math>

The Mandelbrot set contains an infinite number of slightly distorted copies of itself and the central bulb of any of these smaller copies is an approximate cardioid.

File:Cardioid in a watch.jpg
Cardioid formed by light on a watch dial.

Caustics

Certain caustics can take the shape of cardioids. The catacaustic of a circle with respect to a point on the circumference is a cardioid. Also, the catacaustic of a cone with respect to rays parallel to a generating line is a surface whose cross section is a cardioid. This can be seen, as in the photograph to the right, in a conical cup partially filled with liquid when a light is shining from a distance and at an angle equal to the angle of the cone.<ref>"Surface Caustique" at Encyclopédie des Formes Mathématiques Remarquables</ref> The shape of the curve at the bottom of a cylindrical cup is half of a nephroid, which looks quite similar.

File:Cardioid construction.gif
Generating a cardioid as pedal curve of a circle

See also

Notes

Template:Reflist

References

Template:Commons category

Template:Authority control