Polygonal number

From Vero - Wikipedia
Jump to navigation Jump to search

Template:Short description In mathematics, a polygonal number is a number that counts dots arranged in the shape of a regular polygon.Template:R These are one type of 2-dimensional figurate numbers.

Polygonal numbers were first studied during the 6th century BC by the Ancient Greeks, who investigated and discussed properties of oblong, triangular, and square numbers.Template:R

Definition and examples

The number 10 for example, can be arranged as a triangle (see triangular number):

*
**
***
****

But 10 cannot be arranged as a square. The number 9, on the other hand, can be (see square number):

***
***
***

Some numbers, like 36, can be arranged both as a square and as a triangle (see square triangular number):

******
******
******
******
******
******
*
**
***
****
*****
******
*******
********

By convention, 1 is the first polygonal number for any number of sides. The rule for enlarging the polygon to the next size is to extend two adjacent arms by one point and to then add the required extra sides between those points. In the following diagrams, each extra layer is shown as in red.

Triangular numbers

The triangular number sequence is the representation of the numbers in the form of equilateral triangle arranged in a series or sequence. These numbers are in a sequence of 1, 3, 6, 10, 15, 21, 28, 36, 45, and so on.

Square numbers

Polygons with higher numbers of sides, such as pentagons and hexagons, can also be constructed according to this rule, although the dots will no longer form a perfectly regular lattice like above.

Pentagonal numbers

Hexagonal numbers

Formula

An s-gonal number greater than 1 can be decomposed into s−2 triangular numbers and a natural number.

If Template:Mvar is the number of sides in a polygon, the formula for the Template:Mvarth Template:Mvar-gonal number Template:Math is

<math>P(s,n) = \frac{(s-2)n^2-(s-4)n}{2}</math>

The Template:Mvarth Template:Mvar-gonal number is also related to the triangular numbers Template:Math as follows:<ref name=":0">Template:Cite book</ref>

<math>P(s,n) = (s-2)T_{n-1} + n = (s-3)T_{n-1} + T_n\, .</math>

Thus:

<math>\begin{align}

P(s,n+1)-P(s,n) &= (s-2)n + 1\, ,\\ P(s+1,n) - P(s,n) &= T_{n-1} = \frac{n(n-1)}{2}\, ,\\ P(s+k,n) - P(s,n) &= k T_{n-1} = k\frac{n(n-1)}{2}\, . \end{align}</math>

For a given Template:Mvar-gonal number Template:Math, one can find Template:Mvar by

<math>n = \frac{\sqrt{8(s-2)x+{(s-4)}^2}+(s-4)}{2(s-2)}</math>

and one can find Template:Mvar by

<math>s = 2+\frac{2}{n}\cdot\frac{x-n}{n-1}</math>.

Every hexagonal number is also a triangular number

Template:CSS image crop Applying the formula above:

<math>P(s,n) = (s-2)T_{n-1} + n </math>

to the case of 6 sides gives:

<math>P(6,n) = 4T_{n-1} + n </math>

but since:

<math>T_{n-1} = \frac{n(n-1)}{2} </math>

it follows that:

<math>P(6,n) = \frac{4n(n-1)}{2} + n = \frac{2n(2n-1)}{2} = T_{2n-1}</math>

This shows that the Template:Mvarth hexagonal number Template:Math is also the Template:Mathth triangular number Template:Math. We can find every hexagonal number by simply taking the odd-numbered triangular numbers:<ref name=":0" />

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, ...

Table of values

The first six values in the column "sum of reciprocals", for triangular to octagonal numbers, come from a published solution to the general problem, which also gives a general formula for any number of sides, in terms of the digamma function.<ref name="siam_07-003s">Template:Cite web</ref>

Template:Mvar Name Formula Template:Mvar Sum of reciprocals<ref name="siam_07-003s" /><ref>Template:Cite web</ref> OEIS number
1 2 3 4 5 6 7 8 9 10 Template:Calculator
2 Natural (line segment) Template:Math 1 2 3 4 5 6 7 8 9 10 Template:Calculator ∞ (diverges) Template:OEIS link
3 Triangular Template:Math 1 3 6 10 15 21 28 36 45 55 Template:Calculator 2<ref name="siam_07-003s" /> Template:OEIS link
4 Square Template:Math 1 4 9 16 25 36 49 64 81 100 Template:Calculator Template:Sfrac<ref name="siam_07-003s" />Template:Efn-lg Template:OEIS link
5 Pentagonal Template:Math 1 5 12 22 35 51 70 92 117 145 Template:Calculator Template:Math<ref name="siam_07-003s" /> Template:OEIS link
6 Hexagonal Template:Math 1 6 15 28 45 66 91 120 153 190 Template:Calculator Template:Math<ref name="siam_07-003s" /> Template:OEIS link
7 Heptagonal Template:Math 1 7 18 34 55 81 112 148 189 235 Template:Calculator <math>\begin{matrix}

\tfrac{2}{3}\ln 5 \\ +\tfrac{{1}+\sqrt{5}}{3}\ln\tfrac\sqrt{10-2\sqrt{5}}{2} \\ +\tfrac{{1}-\sqrt{5}}{3}\ln\tfrac\sqrt{10+2\sqrt{5}}{2} \\ +\tfrac{\pi\sqrt{25-10\sqrt{5}}}{15} \end{matrix}</math><ref name="siam_07-003s" />

Template:OEIS link
8 Octagonal Template:Math 1 8 21 40 65 96 133 176 225 280 Template:Calculator Template:Math<ref name="siam_07-003s" /> Template:OEIS link
9 Nonagonal Template:Math 1 9 24 46 75 111 154 204 261 325 Template:Calculator Template:OEIS link
10 Decagonal Template:Math 1 10 27 52 85 126 175 232 297 370 Template:Calculator Template:Math Template:OEIS link
11 Hendecagonal Template:Math 1 11 30 58 95 141 196 260 333 415 Template:Calculator Template:OEIS link
12 Dodecagonal Template:Math 1 12 33 64 105 156 217 288 369 460 Template:Calculator Template:OEIS link
13 Tridecagonal Template:Math 1 13 36 70 115 171 238 316 405 505 Template:Calculator Template:OEIS link
14 Tetradecagonal Template:Math 1 14 39 76 125 186 259 344 441 550 Template:Calculator Template:Math Template:OEIS link
15 Pentadecagonal Template:Math 1 15 42 82 135 201 280 372 477 595 Template:Calculator Template:OEIS link
16 Hexadecagonal Template:Math 1 16 45 88 145 216 301 400 513 640 Template:Calculator Template:OEIS link
17 Heptadecagonal Template:Math 1 17 48 94 155 231 322 428 549 685 Template:Calculator Template:OEIS link
18 Octadecagonal Template:Math 1 18 51 100 165 246 343 456 585 730 Template:Calculator Template:Math Template:Math Template:OEIS link
19 Enneadecagonal Template:Math 1 19 54 106 175 261 364 484 621 775 Template:Calculator Template:OEIS link
20 Icosagonal Template:Math 1 20 57 112 185 276 385 512 657 820 Template:Calculator Template:OEIS link
21 Icosihenagonal Template:Math 1 21 60 118 195 291 406 540 693 865 Template:Calculator Template:OEIS link
22 Icosidigonal Template:Math 1 22 63 124 205 306 427 568 729 910 Template:Calculator Template:OEIS link
23 Icositrigonal Template:Math 1 23 66 130 215 321 448 596 765 955 Template:Calculator Template:OEIS link
24 Icositetragonal Template:Math 1 24 69 136 225 336 469 624 801 1000 Template:Calculator Template:OEIS link
Template:Calculator label = Template:Calculator Template:Math Template:Calculator Template:Calculator Template:Calculator Template:Calculator Template:Calculator Template:Calculator Template:Calculator Template:Calculator Template:Calculator Template:Calculator Template:Calculator

The On-Line Encyclopedia of Integer Sequences eschews terms using Greek prefixes (e.g., "octagonal") in favor of terms using numerals (i.e., "8-gonal").

A property of this table can be expressed by the following identity (see Template:OEIS link):

<math>2\,P(s,n) = P(s+k,n) + P(s-k,n),</math>

with

<math>k = 0, 1, 2, 3, ..., s-3.</math>

Combinations

Some numbers, such as 36 which is both square and triangular, fall into two polygonal sets. The problem of determining, given two such sets, all numbers that belong to both can be solved by reducing the problem to Pell's equation. The simplest example of this is the sequence of square triangular numbers.

The following table summarizes the set of Template:Mvar-gonal Template:Mvar-gonal numbers for small values of Template:Mvar and Template:Mvar.

Template:Mvar Template:Mvar Sequence OEIS number
4 3 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600, 2507180834294496361, 85170343853180456676, 2893284510173841030625, 98286503002057414584576, 3338847817559778254844961, ... Template:OEIS link
5 3 1, 210, 40755, 7906276, 1533776805, 297544793910, 57722156241751, 11197800766105800, 2172315626468283465, … Template:OEIS link
5 4 1, 9801, 94109401, 903638458801, 8676736387298001, 83314021887196947001, 799981229484128697805801, ... Template:OEIS link
6 3 All hexagonal numbers are also triangular. Template:OEIS link
6 4 1, 1225, 1413721, 1631432881, 1882672131025, 2172602007770041, 2507180834294496361, 2893284510173841030625, 3338847817559778254844961, 3853027488179473932250054441, ... Template:OEIS link
6 5 1, 40755, 1533776805, … Template:OEIS link
7 3 1, 55, 121771, 5720653, 12625478965, 593128762435, 1309034909945503, 61496776341083161, 135723357520344181225, 6376108764003055554511, 14072069153115290487843091, … Template:OEIS link
7 4 1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609, 350709705290025, 25635978392186449, 9976444135331412025, … Template:OEIS link
7 5 1, 4347, 16701685, 64167869935, … Template:OEIS link
7 6 1, 121771, 12625478965, … Template:OEIS link
8 3 1, 21, 11781, 203841, … Template:OEIS link
8 4 1, 225, 43681, 8473921, 1643897025, 318907548961, 61866420601441, 12001766689130625, 2328280871270739841, 451674487259834398561, 87622522247536602581025, 16998317641534841066320321, … Template:OEIS link
8 5 1, 176, 1575425, 234631320, … Template:OEIS link
8 6 1, 11781, 113123361, … Template:OEIS link
8 7 1, 297045, 69010153345, … Template:OEIS link
9 3 1, 325, 82621, 20985481, … Template:OEIS link
9 4 1, 9, 1089, 8281, 978121, 7436529, 878351769, 6677994961, 788758910641, 5996832038649, 708304623404049, 5385148492712041, 636056763057925561, ... Template:OEIS link
9 5 1, 651, 180868051, … Template:OEIS link
9 6 1, 325, 5330229625, … Template:OEIS link
9 7 1, 26884, 542041975, … Template:OEIS link
9 8 1, 631125, 286703855361, … Template:OEIS link

In some cases, such as Template:Math and Template:Math, there are no numbers in both sets other than 1.Template:Citation needed

The problem of finding numbers that belong to three polygonal sets is more difficult. Katayama<ref>Template:Cite journal</ref> proved that if three different integers Template:Mvar, Template:Mvar, and Template:Mvar are all at least 3 and not equal to 6, then only finitely many numbers are simultaneously Template:Mvar-gonal, Template:Mvar-gonal, and Template:Mvar-gonal.

Katayama, Furuya, and Nishioka<ref>Template:Cite journal</ref> proved that if the integer Template:Mvar is such that <math>s=5</math> or <math>7\le s\le 12</math>, then the only Template:Mvar-gonal square triangular number is 1. For example, that paper gave the following proof for the case where <math>s=5</math>.<ref>Ibid., p. 4.</ref> Suppose that <math>P(3,n)=P(4,p)=P(5,q)</math> for some positive integers Template:Mvar, Template:Mvar, and Template:Mvar. A calculation shows that the point <math>(x,y)</math> defined by <math>(x,y)=(48p^{2}+3,24p(2n+1)(6q-1))</math> is on the curve <math>Y^{2}=X^{3}-X^{2}-9X+9</math>. That fact forces <math>(x,y)=(51,360)</math> (as an elliptic curve database<ref>Template:Cite web</ref> confirms), so <math>p=1</math> and the result follows.

The number 1225 is hecatonicositetragonal (Template:Math), hexacontagonal (Template:Math), icosienneagonal (Template:Math), hexagonal, square, and triangular.

See also

Notes

Template:Reflist

References

Template:Reflist

Bibliography

Template:Classes of natural numbers Template:Series (mathematics) Template:Authority control