Primeval number

From Vero - Wikipedia
Jump to navigation Jump to search

Template:Short description In recreational number theory, a primeval number is a natural number n for which the number of prime numbers which can be obtained by permuting some or all of its digits (in base 10) is larger than the number of primes obtainable in the same way for any smaller natural number. Primeval numbers were first described by Mike Keith.

The first few primeval numbers are

1, 2, 13, 37, 107, 113, 137, 1013, 1037, 1079, 1237, 1367, 1379, 10079, 10123, 10136, 10139, 10237, 10279, 10367, 10379, 12379, 13679, ... Template:OEIS

The number of primes that can be obtained from the primeval numbers is

0, 1, 3, 4, 5, 7, 11, 14, 19, 21, 26, 29, 31, 33, 35, 41, 53, 55, 60, 64, 89, 96, 106, ... Template:OEIS

The largest number of primes that can be obtained from a primeval number with n digits is

1, 4, 11, 31, 106, 402, 1953, 10542, 64905, 362451, 2970505, ... Template:OEIS

The smallest n-digit number to achieve this number of primes is

2, 37, 137, 1379, 13679, 123479, 1234679, 12345679, 102345679, 1123456789, 10123456789, ... Template:OEIS

Primeval numbers can be composite. The first is 1037 = 17×61. A Primeval prime is a primeval number which is also a prime number:

2, 13, 37, 107, 113, 137, 1013, 1237, 1367, 10079, 10139, 12379, 13679, 100279, 100379, 123479, 1001237, 1002347, 1003679, 1012379, ... Template:OEIS

The following table shows the first seven primeval numbers with the obtainable primes and the number of them.

Primeval number Primes obtained Number of primes
1 0
2 2 1
13 3, 13, 31 3
37 3, 7, 37, 73 4
107 7, 17, 71, 107, 701 5
113 3, 11, 13, 31, 113, 131, 311 7
137 3, 7, 13, 17, 31, 37, 71, 73, 137, 173, 317 11

Base 12

In base 12, the primeval numbers are: (using inverted two and three for ten and eleven, respectively)

1, 2, 13, 15, 57, 115, 117, 125, 135, 157, 1017, 1057, 1157, 1257, 125Ɛ, 157Ɛ, 167Ɛ, ...

The number of primes that can be obtained from the primeval numbers is: (written in base 10)

0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 20, 23, 27, 29, 33, 35, ...
Primeval number Primes obtained Number of primes (written in base 10)
1 0
2 2 1
13 3, 31 2
15 5, 15, 51 3
57 5, 7, 57, 75 4
115 5, 11, 15, 51, 511 5
117 7, 11, 17, 117, 171, 711 6
125 2, 5, 15, 25, 51, 125, 251 7
135 3, 5, 15, 31, 35, 51, 315, 531 8
157 5, 7, 15, 17, 51, 57, 75, 157, 175, 517, 751 11

Note that 13, 115 and 135 are composite: 13 = 3×5, 115 = 7×1Ɛ, and 135 = 5×31.

See also

Template:Classes of natural numbers Template:Prime number classes