800 (number)

From Vero - Wikipedia
Jump to navigation Jump to search

Template:Redirect Template:Infobox number 800 (eight hundred) is the natural number following 799 and preceding 801.

It is the sum of four consecutive primes (193 + 197 + 199 + 211). It is a Harshad number, an Achilles number and the area of a square with diagonal 40.<ref name="area of a square with diagonal 2n">Template:Cite OEIS</ref>

Integers from 801 to 899

800s

Template:Main

810s

Template:Redirect-multi

820s

  • 820 = 22 × 5 × 41, 40th triangular number, smallest triangular number that starts with the digit 8,<ref name=":2">Template:Cite OEIS</ref> Harshad number, happy number, repdigit (1111) in base 9
  • 821 = prime number, twin prime, Chen prime, Eisenstein prime with no imaginary part, lazy caterer number Template:OEIS, prime quadruplet with 823, 827, 829
  • 822 = 2 × 3 × 137, sum of twelve consecutive primes (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97), sphenic number, member of the Mian–Chowla sequence<ref>Template:Cite OEIS</ref>
  • 823 = prime number, twin prime, lucky prime, the Mertens function of 823 returns 0, prime quadruplet with 821, 827, 829
  • 824 = 23 × 103, refactorable number, sum of ten consecutive primes (61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103), the Mertens function of 824 returns 0, nontotient
  • 825 = 3 × 52 × 11, Smith number,<ref name=":3">Template:Cite OEIS</ref> the Mertens function of 825 returns 0, Harshad number
  • 826 = 2 × 7 × 59, sphenic number, number of partitions of 29 into parts each of which is used a different number of times<ref>Template:Cite OEIS</ref>
  • 827 = prime number, twin prime, part of prime quadruplet with {821, 823, 829}, sum of seven consecutive primes (103 + 107 + 109 + 113 + 127 + 131 + 137), Chen prime, Eisenstein prime with no imaginary part, strictly non-palindromic number<ref name=":4">Template:Cite OEIS</ref>
  • 828 = 22 × 32 × 23, Harshad number, triangular matchstick number<ref>Template:OEIS</ref>
  • 829 = prime number, twin prime, part of prime quadruplet with {827, 823, 821}, sum of three consecutive primes (271 + 277 + 281), Chen prime, centered triangular number

830s

Template:Main

840s

Template:Main

850s

860s

870s

880s

Template:Main

Template:Main

  • 881 = prime number, twin prime, sum of nine consecutive primes (79 + 83 + 89 + 97 + 101 + 103 + 107 + 109 + 113), Chen prime, Eisenstein prime with no imaginary part, happy number
  • 882 = 2 × 32 × 72 = <math>\binom{9}{5}_2</math> a trinomial coefficient,<ref>Template:Cite OEIS</ref> Harshad number, totient sum for first 53 integers, area of a square with diagonal 42<ref name="area of a square with diagonal 2n" />
  • 883 = prime number, twin prime, lucky prime, sum of three consecutive primes (283 + 293 + 307), sum of eleven consecutive primes (59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103), the Mertens function of 883 returns 0
  • 884 = 22 × 13 × 17, the Mertens function of 884 returns 0, number of points on surface of tetrahedron with sidelength 21<ref>Template:Cite OEIS</ref>
  • 885 = 3 × 5 × 59, sphenic number, number of series-reduced rooted trees whose leaves are integer partitions whose multiset union is an integer partition of 7.<ref>Template:Cite OEIS</ref>
  • 886 = 2 × 443, the Mertens function of 886 returns 0
    • country calling code for Taiwan
  • 887 = prime number followed by primal gap of 20, safe prime,<ref name=":5" /> Chen prime, Eisenstein prime with no imaginary part

Template:Main

  • 888 = 23 × 3 × 37, sum of eight consecutive primes (97 + 101 + 103 + 107 + 109 + 113 + 127 + 131), Harshad number, strobogrammatic number,<ref name=":0" /> happy number, 888!! - 1 is prime<ref>Template:Cite OEIS</ref>
  • 889 = 7 × 127, the Mertens function of 889 returns 0

890s

  • 890 = 2 × 5 × 89 = 192 + 232 (sum of squares of two successive primes),<ref>Template:Cite OEIS</ref> sphenic number, sum of four consecutive primes (211 + 223 + 227 + 229), nontotient
  • 891 = 34 × 11, sum of five consecutive primes (167 + 173 + 179 + 181 + 191), octahedral number
  • 892 = 22 × 223, nontotient, number of regions formed by drawing the line segments connecting any two perimeter points of a 6 times 2 grid of squares like this Template:OEIS.
  • 893 = 19 × 47, the Mertens function of 893 returns 0
    • Considered an unlucky number in Japan, because its digits read sequentially are the literal translation of yakuza.
  • 894 = 2 × 3 × 149, sphenic number, nontotient
  • 895 = 5 × 179, Smith number,<ref name=":3" /> Woodall number,<ref>Template:Cite OEIS</ref> the Mertens function of 895 returns 0
  • 896 = 27 × 7, refactorable number, sum of six consecutive primes (137 + 139 + 149 + 151 + 157 + 163), the Mertens function of 896 returns 0
  • 897 = 3 × 13 × 23, sphenic number, Cullen number Template:OEIS
  • 898 = 2 × 449, the Mertens function of 898 returns 0, nontotient
  • 899 = 29 × 31 (a twin prime product),<ref>Template:Cite OEIS</ref> happy number, smallest number with digit sum 26,<ref>Template:Cite OEIS</ref> number of partitions of 51 into prime parts

References

Template:Reflist Template:Integers