Steven Weinberg
Template:Short description Template:Use mdy dates Template:Infobox scientist
Steven Weinberg (Template:IPAc-en; May 3, 1933 – July 23, 2021) was an American theoretical physicist and Nobel laureate in physics for his contributions with Abdus Salam and Sheldon Glashow to the unification of the weak force and electromagnetic interaction between elementary particles.
He held the Josey Regental Chair in Science at the University of Texas at Austin, where he was a member of the Physics and Astronomy Departments. His research on elementary particles and physical cosmology was honored with numerous prizes and awards, including the 1979 Nobel Prize in physics and the 1991 National Medal of Science. In 2004, he received the Benjamin Franklin Medal of the American Philosophical Society, with a citation that said he was "considered by many to be the preeminent theoretical physicist alive in the world today." He was elected to the U.S. National Academy of Sciences, Britain's Royal Society, the American Philosophical Society, and the American Academy of Arts and Sciences.
Weinberg's articles on various subjects occasionally appeared in The New York Review of Books and other periodicals. He served as a consultant at the U.S. Arms Control and Disarmament Agency, president of the Philosophical Society of Texas, and member of the Board of Editors of Daedalus magazine, the Council of Scholars of the Library of Congress, the JASON group of defense consultants, and many other boards and committees.<ref>Template:Cite web</ref><ref>Template:Cite web</ref>
Early life
Steven Weinberg was born in 1933 in New York City.<ref>Template:Cite web</ref> His parents were Jewish<ref>Template:Cite web</ref> immigrants;<ref>Template:Cite web</ref> his father, Frederick, worked as a court stenographer, while his mother, Eva (Israel), was a housewife.<ref name=nyt/><ref name=aso>Template:Cite web</ref> Becoming interested in science at age 16 through a chemistry set handed down by a cousin,<ref name=ls/><ref name=nyt/> he graduated from Bronx High School of Science in 1950.<ref name=nobelbio>Template:Cite web</ref> He was in the same graduating class as Sheldon Glashow,<ref name=aso/> whose research, independent of Weinberg's, resulted in their (and Abdus Salam's) sharing the 1979 Nobel in physics.<ref name=aip>Template:Cite web</ref>
In a memoir published after his death in 2021, Weinberg wrote: "Whatever native intelligence and intellectual curiosity I may have, I owe to my parents, in particular, my father."<ref>Template:Cite journal</ref>
In 1954, Weinberg received his bachelor's degree from Cornell University, where he majored in physics with a minor in philosophy. There he resided at the Telluride House. He then went to the Niels Bohr Institute in Copenhagen, where he started his graduate studies and research. After one year, Weinberg moved to Princeton University, where he earned his Ph.D. in physics in 1957, completing his dissertation, "The role of strong interactions in decay processes", under the supervision of Sam Treiman.<ref name=mathgene/><ref>Template:Cite book</ref>
Career and research
After completing his Ph.D., Weinberg worked as a postdoctoral researcher at Columbia University (1957–1959) and University of California, Berkeley (1959) and then was promoted to faculty at Berkeley (1960–1966). He did research in a variety of topics of particle physics, such as the high energy behavior of quantum field theory, symmetry breaking,<ref>Template:Cite web</ref> pion scattering, infrared photons and quantum gravity (soft graviton theorem).<ref>A partial list of this work is: Template:Cite journal; Template:Cite journal; Template:Cite journal; Template:Cite journal</ref> It was also during this time that he developed the approach to quantum field theory described in the first chapters of his book The Quantum Theory of Fields<ref>Template:Cite journal; Template:Cite journal; Template:Cite journal</ref> and started to write his textbook Gravitation and Cosmology, having taken up an interest in general relativity after the discovery of cosmic microwave background radiation.<ref name=nyt>Template:Cite web</ref> He was also appointed the senior scientist at the Smithsonian Astrophysical Observatory.<ref name=nyt/> The Quantum Theory of Fields spanned three volumes and over 1,500 pages, and is often regarded as the leading book in the field.<ref name=nyt/>
In 1966, Weinberg left Berkeley and accepted a lecturer position at Harvard. In 1967 he was a visiting professor at MIT. It was in that year at MIT that Weinberg proposed his model of unification of electromagnetism and nuclear weak forces (such as those involved in beta-decay and kaon-decay),<ref>Template:Cite journal</ref> with the masses of the force-carriers of the weak part of the interaction being explained by spontaneous symmetry breaking. One of its fundamental aspects was the prediction of the existence of the Higgs boson. Weinberg's model, now known as the electroweak unification theory, had the same symmetry structure as that proposed by Glashow in 1961: both included the then-unknown weak interaction mechanism between leptons, known as neutral current and mediated by the Z boson. The 1973 experimental discovery of weak neutral currents<ref>Template:Cite journal[1]</ref> (mediated by this Z boson) was one verification of the electroweak unification. The paper by Weinberg in which he presented this theory is one of the most cited works ever in high-energy physics.<ref>INSPIRE-HEP: Top Cited Articles of All Time (2015 edition)</ref>
After his 1967 seminal work on the unification of weak and electromagnetic interactions, Weinberg continued his work in many aspects of particle physics, quantum field theory, gravity, supersymmetry, superstrings and cosmology. In the years after 1967, the full Standard Model of elementary particle theory was developed through the work of many contributors. In it, the weak and electromagnetic interactions already unified by the work of Weinberg, Salam and Glashow, are made consistent with a theory of the strong interactions between quarks, in one overarching theory. In 1973, Weinberg proposed a modification of the Standard Model that did not contain that model's fundamental Higgs boson. Also during the 1970s, he proposed a theory later known as technicolor, in which new strong interactions resolve the hierarchy problem.<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref>
Weinberg became Eugene Higgins Professor of Physics at Harvard University in 1973, a post he held until 1983.<ref name=aip/> In 1979 with his "folk theorem", he pioneered the modern view on the renormalization aspect of quantum field theory that considers all quantum field theories effective field theories and changed the viewpoint of previous work (including his own in his 1967 paper) that a sensible quantum field theory must be renormalizable.<ref>Template:Cite journal</ref> This approach allowed the development of effective theory of quantum gravity,<ref>Template:Cite journal</ref> low energy QCD, heavy quark effective field theory and other developments, and is a topic of considerable interest in current research.<ref>Template:Cite web</ref>
In 1979, some six years after the experimental discovery of the neutral currents—i.e. the discovery of the inferred existence of the Z boson—but after the 1978 experimental discovery of the theory's predicted amount of parity violation due to Z bosons' mixing with electromagnetic interactions,<ref>Template:Cite conference</ref> Weinberg was awarded the Nobel Prize in Physics with Glashow and Salam, who had independently proposed a theory of electroweak unification based on spontaneous symmetry breaking.<ref name="nyt" /><ref name="aip" />
In 1982 Weinberg moved to the University of Texas at Austin as the Jack S. Josey-Welch Foundation Regents Chair in Science,<ref name="aip" /> and started a theoretical physics group at the university that now has eight full professors and is one of the leading research groups in the field in the U.S.<ref name="nyt" />
Weinberg is frequently listed among the top scientists with the highest research effect indices, such as the h-index and the creativity index.<ref>In 2006 Weinberg had the second-highest creativity index among physicists World's most creative physicist revealed. physicsworld.com (June 17, 2006).</ref> The theoretical physicist Peter Woit called Weinberg "arguably the dominant figure in theoretical particle physics during its period of great success from the late sixties to the early eighties", calling his contribution to electroweak unification "to this day at the center of the Standard Model, our best understanding of fundamental physics".<ref name="woit">Template:Cite web</ref> Science News named him along with fellow theorists Murray Gell-Mann and Richard Feynman the leading physicists of the era, commenting, "Among his peers, Weinberg was one of the most respected figures in all of physics or perhaps all of science".<ref name="sn">Template:Cite web</ref> Sean Carroll called Weinberg one of the "best physicists we had; one of the best thinkers of any variety" who "exhibited extraordinary verve and clarity of thought through the whole stretch of a long and productive life",<ref name="pw">Template:Cite web</ref> while John Preskill called him "one of the most accomplished scientists of our age, and a particularly eloquent spokesperson for the scientific worldview".<ref name="pw" /> Brian Greene said that Weinberg had an "astounding ability to see into the deep workings of nature" that "profoundly shaped our understanding of the universe".<ref name="pw" /> Upon the awarding of the Breakthrough Prize in 2020, one of the founders of the prizes, Yuri Milner, called Weinberg a "key architect" of "one of the most successful physical theories ever", while string theorist Juan Maldacena, the chair of the selection committee, said, "Steven Weinberg has developed many of the key theoretical tools that we use for the description of nature at a fundamental level".<ref name="statesman">Template:Cite web</ref>
Other contributions
Besides his scientific research, Weinberg was a public spokesman for science, testifying before Congress in support of the Superconducting Super Collider, writing articles for The New York Review of Books,<ref>Articles by Steven Weinberg. The New York Review of Books. Nybooks.com. Retrieved on July 27, 2012.</ref> and giving various lectures on the larger meaning of science. His books on science written for the public combine the typical scientific popularization with what is traditionally considered history and philosophy of science and atheism. His first popular science book, The First Three Minutes: A Modern View of the Origin of the Universe (1977), described the start of the universe with the Big Bang and enunciated a case for its expansion.<ref name=ls>Template:Cite web</ref>
Although still teaching physics, in later years he turned his hand to the history of science, efforts that culminated in To Explain the World: The Discovery of Modern Science (2015).<ref name="Wein NYRB Eye">Template:Cite journal</ref> A hostile review<ref>Template:Cite web</ref> in the Wall Street Journal by Steven Shapin attracted a number of commentaries,<ref>Template:Cite web</ref> a response by Weinberg,<ref name="Wein NYRB Eye"/> and an exchange of views between Weinberg and Arthur Silverstein in the NYRB in February 2016.<ref>Template:Cite journal</ref>
In 2016, Weinberg became a default leader for faculty and students opposed to a new law allowing the carrying of concealed guns in UT classrooms. He announced that he would prohibit guns in his classes, and said he would stand by his decision to violate university regulations in this matter even if faced with a lawsuit.<ref>Template:Cite web</ref> Weinberg never retired and taught at UT until his death.<ref name=nyt/>
Personal life and archive
In 1954 Weinberg married legal scholar Louise Goldwasser and they had a daughter, Elizabeth.<ref name=nobelbio/><ref name=ut/>
Weinberg died on July 23, 2021, at age 88 at a hospital in Austin, where he had been undergoing treatment for several weeks.<ref name=ut>Template:Cite web</ref><ref>Template:Cite web</ref>
Weinberg's papers were donated to the Harry Ransom Center at the University of Texas.<ref>'Steven Weinberg: An Inventory of His Papers at the Harry Ransom Center' (Website UTexas)</ref>
Worldview
Weinberg identified as a liberal.<ref name=FacingUp>Template:Cite book</ref>
Views on religion
Weinberg was an atheist.<ref>Template:Cite journal</ref> Before he was an advocate of the Big Bang theory, Weinberg said: "The steady-state theory is philosophically the most attractive theory because it least resembles the account given in Genesis."<ref name="Feist2017">Template:Cite book</ref>
Views on Israel
Weinberg was known for his support of Israel, which he characterized as "the 'most exposed salient' in a war between liberal democracies and Muslim theocracies."<ref>Template:Cite news</ref> He wrote the 1997 essay "Zionism and Its Adversaries" on the issue.<ref>The essay was first published in the "Zionism at 100" issue of The New Republic (September 8–15, 1997, pp. 22–23). It was later reprinted in his book of collected essays, Facing Up.</ref><ref name=FacingUp />
In the 2000s, Weinberg canceled trips to universities in the United Kingdom because of the British boycotts of Israel. At the time, he said: "Given the history of the attacks on Israel and the oppressiveness and aggressiveness of other countries in the Middle East and elsewhere, boycotting Israel indicated a moral blindness for which it is hard to find any explanation other than antisemitism."<ref>Template:Cite news</ref>
Honors and awards
- Honorary Doctor of Science degrees from eleven institutions: University of Chicago, Knox College, University of Rochester, Yale University, City University of New York, Dartmouth College, Weizmann Institute, Clark University, Washington College, Columbia University, Bates College.<ref name="NobelPrize.org 2021">Template:Cite web</ref>
- American Academy of Arts and Sciences, elected 1968<ref name="NobelPrize.org 2021" />
- Fellow of the American Physical Society, elected 1971<ref>Template:Cite web</ref>
- National Academy of Sciences, elected 1972<ref name="NobelPrize.org 2021" />
- J. Robert Oppenheimer Memorial Prize, 1973<ref>Template:Cite book</ref><ref>Template:Cite journal</ref><ref name="NobelPrize.org 2021" />
- Richtmyer Memorial Award (1974)<ref name="NobelPrize.org 2021" />
- Dannie Heineman Prize for Mathematical Physics, 1977<ref name="NobelPrize.org 2021" />
- Steel Foundation Science Writing Award, 1977, for writing The First Three Minutes<ref name="NobelPrize.org 2021" />
- Elliott Cresson Medal (Franklin Institute), 1979<ref name="NobelPrize.org 2021" />
- Nobel Prize in Physics, 1979<ref name=nobelbio/><ref>Template:Cite journal</ref>
- Elected a Foreign Member of the Royal Society (ForMemRS) in 1981<ref name=formemrs>Template:Cite web</ref><ref name=royal/>
- Elected to American Philosophical Society (1982)<ref name="NobelPrize.org 2021" />
- James Madison Medal of Princeton University, 1991<ref name="NobelPrize.org 2021" />
- National Medal of Science, 1991<ref name="NobelPrize.org 2021" />
- President of the Philosophical Society of Texas, 1992<ref name="Niels Bohr Library & Archives">Template:Cite web</ref>
- Emperor Has No Clothes Award by the Freedom From Religion Foundation, 1999<ref>Template:Cite web</ref>
- Lewis Thomas Prize for Writing about Science, 1999<ref name="UT News 2021">Template:Cite web</ref>
- Humanist of the Year, American Humanist Association, 2002<ref name="American Humanist Association 2020">Template:Cite web</ref>
- Benjamin Franklin Medal for Distinguished Achievement in the Sciences, American Philosophical Society, 2004<ref name="franklinscience_recipients">Template:Cite web</ref>
- James Joyce Award, University College Dublin, 2009<ref name="UT News 2009">Template:Cite web</ref>
- Breakthrough Prize, 2020<ref>Template:Cite web</ref><ref name="Breakthrough Prize">Template:Cite web</ref>
Selected publications
A list of Weinberg's publications can be found on arXiv<ref>Template:Cite web</ref> and Scopus.<ref name=scopus>Template:Scopus</ref>
Bibliography: textbooks
- Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (1972)
- The Quantum Theory of Fields (three volumes: I Foundations 1995, II Modern Applications 1996, III Supersymmetry 2000,<ref>Template:Cite journal</ref> Cambridge University Press, Template:ISBN, Template:ISBN, Template:ISBN)
- Cosmology (2008, OUP)
- Lectures on Quantum Mechanics (2012, second edition 2015, CUP)
- Lectures on Astrophysics (2019, CUP, Template:ISBN)
- Foundations of Modern Physics (2021, CUP, Template:ISBN)
Bibliography: popular science
- The First Three Minutes: A Modern View of the Origin of the Universe (1977, updated with new afterword in 1993, Template:ISBN)
- The Discovery of Subatomic Particles (1983)
- Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures (1987; with Richard Feynman)
- Dreams of a Final Theory: The Search for the Fundamental Laws of Nature (1993), Template:ISBN
- To Explain the World: The Discovery of Modern Science (2015), Harper/HarperCollins Publishers, Template:ISBN
- Steven Weinberg: A Life in Physics (2024), Cambridge University Press, Template:ISBN
Bibliography: collected essays
- Facing Up: Science and Its Cultural Adversaries (2001, 2003, HUP)
- Glory and Terror: The Coming Nuclear Danger (2004, NYRB)
- Lake Views: This World and the Universe (2010), Belknap Press of Harvard University Press, Template:ISBN.
- Third Thoughts (2018), Belknap Press, Template:ISBN
Scholarly articles
- Template:Cite journal
- Template:Cite journal
- Template:Cite report
- Template:Cite journal
- Template:Cite journal
Popular articles
- A Designer Universe?, a refutation of attacks on the theories of evolution and cosmology, e.g., those conducted under the rubric of intelligent design, is based on a talk given in April 1999 at the Conference on Cosmic Design of the American Association for the Advancement of Science in Washington, D.C. This and other works express Weinberg's strongly held position that scientists should be less passive in defending science against anti-science religiosity.
- Beautiful Theories, an article reprinted from Dreams of a Final Theory by Steven Weinberg in 1992 which focuses on the nature of beauty in physical theories.
- The Crisis of Big Science, The New York Review of Books, May 10, 2012. Weinberg places the cancellation of the Superconducting Super Collider in the context of a bigger national and global socio-economic crisis, including a general crisis in funding for science research and the provision of adequate education, healthcare, transportation, and communication infrastructure, and criminal justice and law enforcement.
See also
References
External links
Template:Commons category Template:Wikiquote
- Template:Nobelprize including the Nobel Lecture, December 8, 1979, "Conceptual Foundations of the Unified Theory of Weak and Electromagnetic Interactions"
- Template:C-SPAN
- Template:Cite web
- Template:Cite journal
- Template:Cite web
Template:Nobel Prize in Physics Template:1979 Nobel Prize winners Template:FRS 1981 Template:Authority control
- Pages with broken file links
- Steven Weinberg
- 1933 births
- 2021 deaths
- 20th-century atheists
- 21st-century American physicists
- 21st-century atheists
- Jewish American atheism activists
- American atheism activists
- American Nobel laureates
- American skeptics
- American string theorists
- Historians of physics
- American Zionists
- The Bronx High School of Science alumni
- Columbia University alumni
- Cornell University alumni
- American critics of religions
- Fellows of the American Academy of Arts and Sciences
- Fellows of the American Physical Society
- Foreign members of the Royal Society
- Harvard University staff
- Jewish American scientists
- Jewish American physicists
- Members of JASON (advisory group)
- Members of the American Philosophical Society
- Members of the United States National Academy of Sciences
- MIT Center for Theoretical Physics faculty
- National Medal of Science laureates
- Nobel laureates in Physics
- Princeton University alumni
- Scientists from New York City
- University of California, Berkeley faculty
- University of Texas at Austin faculty
- Jewish Nobel laureates